Exploding Chromosomes Fuel Research About Evolution Of Genetic Storage
ScienceDaily (Aug. 21, 2008) — Human cells somehow squeeze two meters of double-stranded DNA into the space of a typical chromosome, a package 10,000 times smaller than the volume of genetic material it contains.
"It is like compacting your entire wardrobe into a shoebox," said Riccardo Levi-Setti, Professor Emeritus in Physics at the University of Chicago.
Now research into single-celled, aquatic algae called dinoflagellates is showing that these and related organisms may have evolved more than one way to achieve this feat of genetic packing. Even so, the evolution of chromosomes in dinoflagellates, humans and other mammals seem to share a common biochemical basis, according to a team Levi-Setti led. The team's findings appear online, in Science Direct's list of papers in press in the European Journal of Cell Biology.
Packing the whole length of DNA into tiny chromosomes is problematic because DNA carries a negative charge that, unless neutralized, prevents any attempt at folding and coiling due to electrostatic repulsion. The larger the quantity of DNA, the more negative charge must be neutralized along its length.
Read the rest at ScienceDaily:
...religion thrives through the use of the mind and intellect. Skepticism and critical thinking are friends, not enemies, of religion. Jacob Neusner, 1977
No comments:
Post a Comment